九九成人丨www婷婷丨亚洲va无码手机在线电影丨久久男女视频丨国产aaa大片

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

更新時間:2025-10-13      點擊次數:303

前言

鈣鈦礦太陽能電池(PSCs)因其優異的光電轉換效率和制備工藝簡便性,已成為光伏領域的重要研究方向。然而,提升開路電壓(VOC)并確保長期穩定性仍是關鍵技術挑戰。空穴傳輸層(HTL)的材料特性和界面工程直接影響VOC和填充因子(FF)表現。近年來,準費米能級分裂(QFLS)映射和擬態電流-電壓(pseudo-JV)曲線等先進表征技術為HTL結構優化提供了有力的分析工具。


QFLS與開路電壓的關聯機制

QFLS定義為導帶電子準費米能級(EF,e)與價帶空穴準費米能級(EF,h)的能量差,反映光生載流子的化學勢能分布。理論上,QFLS應等于器件開路電壓(VOC = ΔEF/q),但實際器件中因接觸和傳輸層的電化學勢損失,兩者存在不匹配現象。通過測量QFLS,研究人員能直接量化太陽能電池的輻射與非輻射復合損失,精確識別電壓損失來源——區分材料體復合與界面問題的貢獻,為VOC優化和材料選擇提供量化依據。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:光焱科技EnlitechQFLS準費米能級分裂技術指南:評估光伏材料性能上限 太陽能電池性能表征與效率提升的關鍵參數分析


HTL結構改質的研究進展

1.溴取代自組裝單分子層的界面工程

新加坡國立大學侯毅(Yi Hou)教授團隊(2025在寬禁帶鈣鈦礦太陽能電池研究中,采用溴取代策略修飾自組裝單分子層(SAM)末端基團。研究顯示,DCB-Br-2處理能有效調控SAM與鈣鈦礦的界面相互作用和能級匹配,顯著減少非輻射復合并加速空穴提取。穩態光致發光(PL)和PL量子產率(PLQY)測量結果表明,DCB-Br-2處理后的鈣鈦礦薄膜展現最高PL強度和QFLS值,甚至超越裸鈣鈦礦薄膜,直接證明缺陷鈍化和空穴提取的改善效果。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers-Fig.3e


光強度依賴PL測量所提取的pseudo-JV曲線進一步驗證,DCB-Br-2能有效降低HTL/鈣鈦礦界面的偽填充因子(p-FF)損失。該研究在1.79 eV寬禁帶電池中實現1.37 V開路電壓,VOC損失僅0.42 V,超越Shockley-Queisser極限的90%,非輻射復合VOC損失降至0.13 V

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers-Fig.3c


2.QFLSVOC不匹配的機制解析

德國波茨坦大學Dieter Neher教授團隊(2019深入探討鈣鈦礦太陽能電池中QFLSVOC的不匹配問題。研究發現,測得的QFLS顯著低于輻射極限,主要復合機制為非輻射復合,尤其集中在鈣鈦礦/電荷傳輸層界面。此不匹配源于能級偏移和界面復合加速。研究強調,外部VOC并不全反映吸收層復合機制,可能導致對復合行為的誤判。通過實驗與漂移-擴散模擬驗證,理想匹配且阻擋的傳輸層能避免VOC飽和并消除QFLS-VOC不匹配。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells-Fig.3


3.高光譜QFLS映射的界面損失可視化

意大利帕維亞大學Giulia Grancini教授團隊(2022采用高光譜QFLS映射(Δμ映射)技術,可視化和量化反向結構鈣鈦礦太陽能電池界面的非輻射損失。該技術能直觀觀察不同有機鈍化劑(如苯乙基銨PEAI)對QFLS空間分布的影響,量化其對光伏性能的提升作用。QFLS映像清晰顯示界面缺陷的有效鈍化和非輻射復合的減少,為界面工程優化提供空間分布信息。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces-Fig.3a-f


4.雙功能聚合物添加劑的通用性改質

中科院青島生物能源與過程研究所逄淑平教授團隊(2024開發了通用性雙功能聚合物添加劑,顯著提升鈣鈦礦太陽能電池QFLS,使VOC接近Shockley-Queisser理論極限。該添加劑通過同時鈍化陽離子和陰離子缺陷,將鈣鈦礦薄膜從強N型轉變為弱N型,優化能級匹配并有效抑制體非輻射復合。QFLS量化分析能直接評估不同處理方法對非輻射復合能量損失的貢獻,為材料設計提供精確指導。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

取自:Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer- Graphical Abstract


QFLS-Maper技術在HTL開發中的應用

QFLSpseudo-JV作為非接觸光電表征手段,能穿透復雜器件結構,直接揭示材料固有光電潛力及各層對整體性能的影響,避免傳統電學測量中接觸和傳輸層問題的干擾。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用

現代QFLS-Maper設備在HTL結構開發中提供三項核心功能:

1.QFLS分布映射:數秒內呈現材料QFLS空間分布圖像,直觀顯示樣品均勻性和缺陷密度。比較不同HTL結構(如傳統BCP與改質BCPS)的QFLS映射圖,可發現改質HTL顯著提升QFLS中心值(提升超過10 mV),并使QFLS分布的半高寬(FWHM)明顯變窄,直接反映界面復合抑制和材料均勻性改善。此可視化能力使研究人員快速識別界面缺陷分布,定量評估不同改質方法的效果。

2.擬態電流-電壓曲線:通過光強度依賴PLQY測量,兩分鐘內構建不受電極或傳輸層影響的pseudo-JV曲線,預測材料理論效率上限和潛在填充因子(pFF)。HTL結構改質后,若pseudo-JV曲線曲率趨于理想,預示器件FF將顯著提升。即使未完成完整器件制備,僅通過QFLS映像和pseudo-JV曲線,即可對HTL改質方案的VOCFF潛力作出快速準確判斷,有效篩選具潛力的材料組合和工藝條件。

3.分層檢測能力:支持制備過程中不同階段(裸吸收層、吸收層/HTL堆棧、吸收層/電子傳輸層堆棧等)的QFLSpseudo-JV測量。精準定位電荷復合損失的具體位置,理解每層材料對器件性能極限的影響,為界面工程和材料優化提供直接實驗依據。

擺脫VOC與QFLS不匹配:擬態J-V曲線在HTL結構的應用


技術展望

QFLS分裂映像與pseudo-JV曲線等表征技術正重塑光電薄膜材料的研發模式。這些技術深入揭示材料內在光電物理機制,特別在HTL結構改質領域,提供定量分析和預測能力。隨著先進表征工具的普及,太陽能電池研發效率將顯著提升,加速高性能、高穩定性光伏器件的商業化進程。



參考文獻




版權所有©2025 光焱科技股份有限公司 All Rights Reserved    備案號:滬ICP備2021022654號-3    sitemap.xml    管理登陸    技術支持:化工儀器網